Skip to main content

서포트 벡터 머신

· 2 min read

SVM 개념

  • 서포트 벡터, 하이퍼플레인, 차원 전환 원리를 이용하여 주어진 데이터가 어떤 카테고리에 속할지 판단하는 이진선형분류모델
  • 서포트 벡터 분류기 + 비선형 커널 = 서포트벡터머신

SVM의 개념도, 문제 해결방법, 장단점

개념도

선형 문제비선형 문제
SVMSVM

문제 해결 방법

구분선형 문제비선형 문제
특징초평면 분리 가능초평면 분리 불가
해결방법마진을 최대화하는 서포트벡터 탐색 후 분류커널 트릭 사용하여 데이터 고차원 매핑

선형 문제

  • 하드 마진: 오류 불가
  • 소프트 마진: 마진 내 오류 허용, 하이퍼파라미터로 제어

장단점

  • 장점: 인공신경망의 과적합 해결방법 제시, 비선형 문제 해결
  • 단점: 단일 SVM 성능 한계

SVM 한계점과 해결방안

  • SVM 데이터 범주간 비율이 비슷하다는 가정에서 학습하고 예측결과 도출, 실제 데이터는 데이터의 불균형이 빈번하여 모델 성능이 저하됨.
  • 앙상블 기법을 이용한 SVM으로 성능 문제 해결.

참조