본문으로 건너뛰기

감정 인식 기술

· 약 4분

감정 인식 기술 개념

  • 자연어로 전달되는 감정을 분류하는 감정 분석 대비 표정, 음성, 자세 등을 관찰하여 광범위한 감정상태를 식별하는 기술
  • 감정 임베딩과 대화형 봇 감정 인식 기술을 통해 다양한 상황과 사용자 요구 대응

감정 인식 기술 유형, 활용 분야

감정 임베딩 기술 유형

구분설명관련 기술
감정 단어 임베딩감정 정보를 단어 임베딩으로 임베딩하는데 중점Emo2Vec, SSWE
이모티콘 임베딩감정을 표현하기 위해 채팅 메세지 내부 이모티콘을 임베딩Emoji2Vec, DeepMoji
다중감정 인식용 단어 인베딩여러 감정 레이블을 동시 할당하여 감정을 더 자세히 설명다중라벨분류, SGM

대화형 봇 감정 인식 기술 유형

구분설명비고
앙상블 모델 기반 감정인식여러 개별 모델을 결합하여 포괄적, 강인한 모델 구성주요 감정 모델 간 가중 평균 처리
지식 표현 기반 감정인식사전 지식에 정서어휘, 상식, 언어패턴, 정서의미규칙 등 포함하여 표현향상어휘기반 감성 지식 통합
감정인식 위한 전이학습부족한 훈련 데이터 문제 완화, 유도적 전이학습 사용순차전이학습, 다중작업학습
이모티콘수용 감정인식이모티콘 기반에 SVM 등 분류기로 감정 주석 추가이모티콘 포함 텍스트 희소
맥락이해기반 감정인식상황적 표현 학습 위해 발화 및 컨텍스트 수준에서 셀프 어텐션 사용GPT-4o 등 LLM

감정 인식 기술 활용분야

구분활용분야비고
공공SNS 공개 데이터 분석, 감정 모니터링 자살예방, 테러리스트 탐지범죄예방, 안전
의료긴급 상황에서 환자의 감정 예측환자 의도 파악
민간대화형 봇 감정인식 활용 감정기반 응답시스템 구축고객응대, 마케팅

감정 인식 기술 고려사항

  • 사용자 데이터의 최소 수집 및 목적 제한을 위한 법, 제도 마련 필요