Skip to main content

36 posts tagged with "pe"

View All Tags

서포트 벡터 머신

· 2 min read

SVM 개념

  • 서포트 벡터, 하이퍼플레인, 차원 전환 원리를 이용하여 주어진 데이터가 어떤 카테고리에 속할지 판단하는 이진선형분류모델
  • 서포트 벡터 분류기 + 비선형 커널 = 서포트벡터머신

SVM의 개념도, 문제 해결방법, 장단점

개념도

선형 문제비선형 문제
SVMSVM

문제 해결 방법

구분선형 문제비선형 문제
특징초평면 분리 가능초평면 분리 불가
해결방법마진을 최대화하는 서포트벡터 탐색 후 분류커널 트릭 사용하여 데이터 고차원 매핑

장단점

  • 장점: 인공신경망의 과적합 해결방법 제시, 비선형 문제 해결
  • 단점: 단일 SVM 성능 한계

SVM 한계점과 해결방안

  • SVM 데이터 범주간 비율이 비슷하다는 가정에서 학습하고 예측결과 도출, 실제 데이터는 데이터의 불균형이 빈번하여 모델 성능이 저하됨.
  • 앙상블 기법을 이용한 SVM으로 성능 문제 해결.

참조

의사결정나무

· 4 min read

의사결정나무 개요

의사결정나무 개념

  • 주어진 입력값들의 조합을 의사결정규칙에 따라 출력값을 예측하는 모형
  • 의사결정규칙을 트리구조로 나타내어 분류와 예측을 수행하는 분석 방법

의사결정나무 구성, 유형, 절차

의사결정나무 구성

  • 루트 노드: 최상단 노드, 첫 분류 조건
  • 부모 노드: 상위 노드
  • 자식 노드: 하위 노드
  • 리프 노드: 결과를 예측하는 말단 노드
  • 엣지: 샘플을 분류하기 위한 조건
  • 뎁스: 루트 노드에서 특정 노드까지 도달하기 위해 거쳐야하는 엣지 수

의사결정나무 유형

  • 분류트리: 범주형 변수를 예측하기 위해 사용되는 트리 모델, 데이터를 여러 범주로 분류
  • 회귀트리: 연속형 변수의 값을 예측하기 위한 트리모델
구분분류트리회귀트리
대상범주형 변수 대상연속형 변수 대상
특징불순도를 기준으로 최적 분류 결정분산을 최소화하는 방향으로 분할
평가방법지니지수, 엔트로피오차제곱합
사용시기명확한 범주를 가진 데이터 분류연속적 수치 예측, 트렌드 예측

의사결정나무 절차

성장 -> 가지치기 -> 최적 나무모형 선택 -> 해석 및 예측

  • 성장: 분석목적에 따른 트리 생성
  • 가지치기: 불필요한 가지를 제거하여 과대적합, 과소적합 방지
  • 타당성 평가: 가장 적은 엔트로피를 갖는 나무를 평가하고 최적 모형 선택
  • 해석 및 예측: 구축된 나무모형 해석

의사결정나무 평가모델

  • 지니 계수: Gini Index
    • 데이터의 불순도를 측정하는 지표
    • 0에 가까울수록 노드의 데이터가 한 클래스로 분류된 것이고, 1에 가까울수록 데이터 분산
  • 엔트로피: Entropy
    • 데이터의 확률분포가 가지는 정보량을 수치로 표현
    • 작을 수록 잘 분류된 것
  • 오차제곱합: Mean Squared Error, MSE
    • 예측치와 실제치의 차이를 측정하는 지표
    • MSE가 작을수록 모델의 예측 성능이 좋다고 평가

OWASP 2021 TOP 10

· 3 min read

OWASP 개요

  • Open Web Application Security Project
  • 소프트웨어의 보안 취약점을 분석하고 연구하는 비영리 단체

OWASP 2024 Top 10 취약점

1. 접근 권한 취약점

  • Broken Access Control
  • 사용자가 권한을 벗어나 행동할 수 없도록 정책 시행
  • 취약한 경우 모든 데이터를 무단으로 열람, 수정, 삭제 가능

2. 암호화 오류

  • Cryptographic Failures
  • 적절한 암호화가 없을시 민감 데이터 노출 가능

3. 인젝션

  • Injection
  • SQL, NoSQL, ORM, LDAP의 인젝션 취약점
  • 사용자 제공 데이터 조작을 위한 공격, XSS 포함

4. 안전하지 않은 설계

  • Insecure Design
  • 설계 단계에서 발생하는 보안 결함
  • 요구사항 및 리소스 관리, 보안 설계, 보안 개발 생명 주기

5. 보안 설정 오류

  • Security Misconfiguration
  • 어플리케이션 보안 설정이 누락되거나 클라우드 서비스 권한이 잘못된 경우

6. 취약하고 오래된 컴포넌트

  • Vulnerable and Outdated Components
  • 취약한 어플리케이션, 라이브러리, 프레임워크 등의 보안 위협

7. 식별 및 인증 오류

  • Identification and Authentication Failures
  • 취약한 인증에서 식별까지 포함된 보안 결함
  • 사용자 신원확인, 인증, 세션관리 취약점

8. 소프트웨어 및 데이터 무결성 오류

  • Software and Data Integrity Failures
  • 안전하지 않은 역직렬화가 병합된 항목으로, 어플리케이션이 신뢰할 수 없는 소스, 저장소, 라이브러리, 모듈에 의존하는 경우 발생

9. 보안 로깅 및 모니터링 오류

  • Security Logging and Monitoring Failures
  • 로깅으로 공격 발생 감지 및 대응까지 포함

10. 서버 측 요청 위조

  • Server-Side Request Forgery
  • 어플리케이션이 사용자 제공 URL의 유효성을 검사하지 않고 원격 리소스를 가져올 때 발생

참조

가치사슬

· 2 min read

가치사슬 개념

value-chain

  • 고객에게 가치를 제공함에 있어 마진을 극대화하기 위한 일련의 활동, 기능, 프로세스

구성

주요활동

  • 운영
  • 물류
  • 마케팅
  • 서비스
구분ERPMESSCMCRM
목적전사지원생산관리물류/공급망관리고객관리
대상전사활동공정유통고객
활동전사자원통합통합 생산공급망 최적화마케팅, 서비스
가치사슬주요+보조주요주요주요
신기술DX디지털트윈빅데이터O2O

보조활동

  • 기업 인프라
  • 인적 자원 관리
  • 기술 개발
  • 조달

분석 단계

  • 가치사슬 활동 분류, 분석
  • 가치 파악 및 비용 정의
  • 경쟁사 가치사슬 벤치마킹
  • 경쟁 우위 확보 및 기회 파악

고려사항

  • ESG 목표 지원
  • 효율화, 자동화

참조

ISMS-P

· 2 min read

ISMS-P 개요

정보보호 및 개인정보보호를 위한 일련의 조치와 활동이 인증기준에 적합한지 인증하는 제도

법적 근거

  • 정보통신망법 제 47조
  • 개인정보 보호법 제 32조 2

인증 체계

  • 정책기관: 과기정통부, 개인정보보호위원회
  • 인증기관: 한국인터넷진흥원(KISA), 금융보안원(FSI)
  • 심사기관: 한국정보통신진흥협회(KAIT), 한국정보통신기술협회(TTA), 개인정보보호협회(OPA), 차세대정보보안인증원(NISC)

인증 기준

1. 관리체계 수립 및 운영

  • 관리체계 기반마련
  • 위험관리
  • 관리체계 점검 및 개선
  • 관리체계 운영

2. 보호대책 요구사항

  • 정책, 조직, 자산관리
  • 인적보안
  • 외부자보안
  • 물리보안
  • 인증 및 권한관리
  • 접근통제
  • 암호화
  • 정보시스템 도입 및 개발 보안
  • 시스템 및 서비스 운영 관리
  • 시스템 및 서비스 보안 관리
  • 사고 예방 및 대응
  • 재해복구

3. 개인정보 처리단계별 요구사항

  • 개인정보 수집 시 보호 조치
  • 개인정보 보유 및 이용 시 보호조치
  • 개인정보 제공 시 보호조치
  • 개인정보 파기 시 보호조치
  • 정보주체 권리 보호

참조

가트너 10대 전략 기술 트렌드 2024

· 5 min read

가트너 10대 전략기술 개요

트리즘, 위협관리, 지속가능 기술 플랫폼엔지니어링, AI증강개발, 산업클라우드 지능형앱, 생성형AI 보편화, 증강-연결인력 기계고객

가트너 10대 전략기술 구성

빌더의 부상, 투자보호, 가치 전달

구분내용비고
빌더의 부상AI 기술로 빌더의 성장과 가치 고도화플랫폼 엔지니어링, AI 증강 개발, 산업 클라우드 플랫폼 등
투자보호AI 기술로 투자자 보호AI 신뢰 리스크 보안 관리, 상시 위협 노출 관리
가치 전달지능형 자동화로 고객 가치 전달기계 고객, 증강 연결 인력

가트너 10대 전략기술 상세

1. AI TRiSM

  • AI Trust, Risk and Security Management
  • AI 모델 거버넌스, 신뢰성, 공정성, 견고성, 효능 및 데이터 보호 정책과 도구들을 준비한 상태에서 운영

2. 지속적인 위협 노출 관리

  • CTEM: Continuous Threat Exposure Management
  • 기업의 보안 위협을 지속적으로 평가하고 관리
  • 선제적 정보보안 대책

3. 지속가능한 기술

  • Sustainable Technology
  • ESG, 생태 균형, 인권 존중
  • 재생에너지, 추적성, 효율성

4. 플랫폼 엔지니어링

  • Platform Engineering
  • SW 제공, 수명주기 관리 위한 내부고객용 플랫폼 구축 및 운영

5. AI 증강 개발

  • AI-Augmented Development
  • 개발, 테스트시 생셩형 AI, 머신러닝과 같은 AI 적용 개발 도구 활용

6. 산업 클라우드 플랫폼

  • ICP: Industry Cloud Platform
  • 특정 산업 분야에 맞춤형 솔루션을 제공하는 전문 클라우드 플랫폼

7. 지능형 애플리케이션

  • Intelligent applications
  • AI를 기반으로 사람과 기계에 자율적으로 반응할 수 있는 프로그램

8. 보편화된 생성형 AI

  • Democratized Generative AI
  • 사전 학습모델, 클라우드 컴퓨팅, 오픈소스의 결합으로 생성형 AI가 보편화되면서 전 세계 사람들이 모델에 접근 가능

9. 증강-연결된 인력

  • Augmented-Connected Workforce
  • 회사로부터 디지털 도구로 모니터링 및 업무를 하는 노동자

10. 기계 고객

  • Machine Customers, Custobot
  • 기계가 인간을 대신해서 자율적으로 제품이나 서비스 주문 및 결제

AI TRiSM

1-1. 설명 가능성, 모델 모니터링

  • xAI, Explainability / Model Monitoring
  • AI 알고리즘의 설명 가능성 확보하고 신뢰할 수 있게 하는 것
  • AI 모델 성능 모니터링으로 프로세스 효율적 개선 가능

1-2. 모델옵스

  • ModelOps
  • AI 모델의 재조정, 재학습, 재구축 지원
  • AI 기반 시스템 개발, 운영, 유지보수의 무중단 프로세스
  • AI 거버넌스와 라이프사이클 관리

1-3. AI 어플리케이션 보안

  • AI Application Security
  • AI 적대적 공격 방어 및 위협 탐지, 안정적 프로세스 보장

1-4. 개인정보보호

  • Privacy
  • 데이터 보호, GDPR 준수
  • 개인정보 비식별화를 넘어 합성 데이터, 허위 데이터 사용

참조

개인정보 보호법 2차 시행령 개정사항

· 4 min read

법적 근거

개인정보 보호법 및 시행령 2차 개정사항 안내서 및 현장설명회 자료

주요 변경사항

보호수준평가, CPO 자격요건, 손해배상책임 대상, 국외 개인정보 처리방침

구분기존내용변경내용
공공기관 개인정보 보호수준 평가진단 결과의 법적 근거 미비, 평가 절차와 대상 선정 기준 부재평가 절차와 기준 명확화, 법적 근거 신설, 결과 공개 및 연간 평가 실시
개인정보 보호책임자 제도 개선CPO 자격 요건과 협의회 부재CPO 자격 요건 강화, CPO 협의회 신설로 협력 강화
완전자동화 결정에 대한 정보주체의 권리AI 결정에 대한 정보주체 권리 미규정AI 결정에 대해 설명 요구 및 권리 거부 가능 근거 마련
손해배상책임 보장 의무대상 확대손해배상책임 이행 의무 대상 제한적의무 대상을 모든 개인정보처리자로 확대, 매출액 및 보유량 기준 정비
고유식별정보의 관리실태 정기조사불규칙적 조사로 관리 미흡관리실태 정기조사 주기 3년으로 명확화, 관리 강화
국외 수집·이전 개인정보 처리방침 공개국외 이전 개인정보 처리방침 비공개국외에서 수집하거나 이전하는 개인정보 처리방침 공개 의무화

CPO

실무4년, 박사2년, 개인정보 거버넌스

구분기존 요건개정 요건
자격 요건명확히 정의되지 않음개인정보보호, 정보보호, 정보기술 경력 합쳐 총 4년 이상,
개인정보보호 경력은 최소 2년 이상 필요
학위 인정학위 취득에 따른 경력 인정 규정 없음- 박사학위: 개인정보보호 경력 2년 인정
- 석사학위: 개인정보보호 경력 1년 인정
- 학사학위: 개인정보보호 경력 6개월 인정
업무 범위일반적인 개인정보 보호 업무- 개인정보 보호 계획 수립 및 시행
- 개인정보 처리 실태 조사 및 개선
- 불만 처리 및 피해 구제
- 내부 통제 시스템 구축
- 개인정보 보호 교육 계획 수립 및 시행
독립성 보장독립성 보장에 대한 명확한 규정 없음개인정보처리자는 CPO가 업무를 독립적으로 수행할 수 있도록 지원, 업무 수행 중 불이익 주지 않아야 함

리먼(Lehman)의 소프트웨어 진화 법칙

· 3 min read

I. 개요

가. 개념

  • 대부분의 소프트웨어가 존재하는 동안 변경이 일반적이며, 지속적으로 유지되기 위해 준수해야하는 법칙

나. 필요성

  • SW 변화의 특성을 이해하여 유지보수, 변경관리, 형산관리, 품질 통제의 중요 모델로 반영할 수 있으므로 효과적인 유지보수 및 변화관리 가능.

II. 핵심요소, 적용방안

가. 핵심요소

구분법칙내용
완전유지관리조직적 안전성평균 유효한 글로벌 작업률은 제품 수명 기간동안 변하지 않음
완전유지관리지속적인 성장사용자를 만족시키기 위해 기능적 성장 필요
적응유지관리지속적인 변화SW는 지속적으로 적응하고 변화해야함
적응유지관리자기 규제시스템 진화는 제품의 배포와 프로세스 측정으로 자체 조절됨
적응유지관리피드백 시스템진화 프로세스는 다중 레벨, 다중 에이전프 피드백 시스템이여야함
수리유지관리품질 저하변경이 엄격하게 유지 관리되고 적응하지 않으면 품질 감소
예방유지관리증가하는 복잡성시스템이 발전할 때 관리하지 않으면 복잡성 증가
예방유지관리친숙도 보존사용자는 만족스러운 진화가 될 수 있게 내용과 행동을 숙달해야함

기출

  • 129/2/4

웹 3.0

· 2 min read

웹 3.0의 개요

개념

웹 2.0웹 3.0
참여소유
공유융합
개방개인화

시멘틱 웹 기반으로 웹 페이지의 내용을 이해하고, 개인 맞춤 정보를 제공하는 웹 기술

배경

  • 웹2.0의 글로벌 플랫폼 기업들에 데이터가 집중됨
  • 중앙집중화된 플랫폼이 멈출 시 일상 마비

핵심요소

요소기술비고
컨텐츠 소유권NFT디지털켄텐츠 소유권 주장 가능
탈중앙화블록체인중앙기관 없는 분산 원장
개인화서비스AI사용자 맞춤형 데이터 제공
확장된 미디어 인터페이스메타버스현실-가상 융합 공간 제공

변화

  • 탈중앙 자율조직 DAO 출현
  • 블록체인과 AI로 웹 구조 혁신
  • 웹 활동으로 코인, 토큰 보상

기출

  • 130/4/5

참조

음성 데이터 마이닝

· 2 min read

I. 마이데이터의 개요

가. 개념

개인정보 전송요구권을 통해 내 데이터를 능동적으로 관리하고 활용하는 서비스

나. 목적

마이데이터 사업자의 수익창출, 고객 락킹, 빅데이터 수집 및 맞춤형 추천 서비스 제공을 위해 필요.

II. 제공범위 및 활성화 방안

가. 제공 범위

산업제공범위
은행거래내역, 대출내역 등
보험주계약, 보험료 납입내역 등
금융투자주식 보유수량 등
카드결제내역, 포인트 등
통신통신료 납부, 소액 결제내역 등
공공세금 납입 증명 등

나. 활성화 방안

구분내용비고
제도적산업 확대 가이드 구성
마이데이터 사업자 지원 확대
-
기술적데이터 전산화, 표준화
보안 기술 연구 지원
-
관리적데이터 주권 홍보 강화
기존 사업자들의 개선 사항반영
-

사업자 불신, 정보제공 거부감, 사용자 인식부족 등을 저해요인을 없애기 위해 서비스 신뢰성 확보 및 홍보 필요.

기출

  • 128/2/4